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Abstract Commercial and research work in the field
of software defined radio (SDR) has produced designs
which have been able to deliver the efficiency and
computational power needed to process 3G wireless
technologies. Though efficient 3G processing has been
achieved by these designs, next generation 4G SDR
technology requires 10-1000x more computational per-
formance but limits the power budget increase to 2-5x.
In this paper, we present a breakdown of the major 4G
kernels and analyze two methods of increasing perfor-
mance and reducing power consumption. Specifically,
we consider the effect of SIMD width and reduction in
number of register file accesses on the performance and
energy consumption of a SDR architecture, SODA. We
show that by increasing SIMD width we can gain al-
most 2-8x performance increase while increasing total
energy used by 1-2x for different SIMD widths. We
also show that by reducing SIMD register accesses we
can reduce the total energy used by 5-20% for the 4G
kernels.

Keywords Software defined radio -
Single instruction multiple data - 4G wireless

M. Woh (X)) - Y. Lin - S. Seo - S. Mahlke - T. Mudge
University of Michigan—Ann Arbor,

2260 Hayward Street, Ann Arbor,

MI 48109, USA

e-mail: mwoh@umich.edu

Published online: 26 August 2009

1 Introduction

Wireless communication has grown dramatically over
the years. Accessing the web, downloading video, and
listening to music is a growing demand with wireless
users. Third generation wireless (3G) technologies have
been able to provide people with access to these ser-
vices. With the number of users increasing and the de-
mand for higher quality content, the bandwidth needed
exceeds what 3G can provide. Fourth generation wire-
less (4G) technology has been proposed by the Interna-
tional Telecommunications Union (ITU) [4] to increase
the bandwidth to maximum data rates of 100 Mbps for
high mobility situations and 1 Gbps for stationary and
low mobility situations like internet hot spots. With this
increase in bandwidth there will also be an increase
in the number of computations needed to process this
standard on software defined radio (SDR) systems.

Baseband signal processing for mobile terminals has
been a computing challenge for computer architects.
Several architectures have been successful at achieving
the super computer like workloads of 3G wireless sys-
tems while maintaining the mobile device power bud-
get. Though we were able to meet the requirements for
3G, the next generation 4G seems to be an even larger
hurdle. With computational requirements increasing
from 10-1000x compared to 3G and a power envelope
that can increase by only 2-5x [19], we need even more
efficient designs to complete these tasks. We need more
powerful processors that consume less energy because
device scaling is delivering less performance improve-
ments and not reducing power consumption for existing
designs.

In the past ITRS [3] had suggested that in future
generations of process technologies, we would still be
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able to scale frequencies higher. ITRS has been very
optimistic with its predictions and manufacturers in
the past have been able to meet these targets through
material and process improvements. This continuation
of process technology improvement is not sustainable
anymore and current data shows that frequency and
power are reaching a plateau [12]. The only benefit for
changing technologies would be reduction in transistor
size allowing us to pack more logic onto the same
size die.

This slowdown in performance gain requires us to
extract more computation with better architectural de-
sign. One way to extract more computational perfor-
mance is by increasing the width of the datapath and
exploiting more data-level parallelism (DLP) through
the use of SIMD. Not only does this support increased
performance, we can do it with little or no increase
in energy. Though wider SIMD widths will consume
more energy per operation, we can take advantage of
the DLP and reduce the amount of control code and
memory accesses thus reducing the total number of
cycles and total energy overall. In our study, we analyze
the effect that SIMD width has on computational per-
formance and energy for 4G wireless systems. We will
show the maximum possible DLP that can be extracted
from each kernel and the percent of the algorithm
which will benefit from exploiting the DLP.

Another way to extract more computational effi-
ciency is by reducing the total energy consumed. If
performance stays the same but energy is reduced the
total power is also reduced. We found that register
file (RF) access energy accounts for a large percentage

Figure 1 SODA architecture
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of the total energy in many processors. In order to
reduce this large percentage, we analyzed the RF access
patterns within the kernels and found that many of the
kernels have instructions which produce values which
are consumed by the next instruction and never used
again. By storing these values into a small temporary
RF or forwarding the data without writing the value
into the RF, we can save the wasted energy of writing
and reading these values from the main RF.

This paper is organized as follows. In Section 2,
we present the SDR architecture used for the SIMD
width and RF access study. In Section 3, we present a
simplified 4G system and describe some of the major
kernels: an OFDM demodulator /modulator, a MIMO
encoder/decoder, and a channel decoder. In Section 5,
we analyze the kernels and show their potential DLP
and also the instruction breakdown of the algorithm.
We also present the effects that varying SIMD width
has on the computation and energy efficiency. In
Section 6, we analyze the RF access patterns in the
kernels and we show the amount of energy saved by
not writing back unneeded values into the main RF.
The summary and concluding remarks are given in
Section 7.

2 SDR Processors

Most current processor solutions for SDR utilize SIMD
to exploit the large amounts of DLP. These include In-
fineon’s MuSIC [7], Analog Device’s TigerSHARC [9],
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Phillips’s EVP [6], and Sandbridge’s Sandblaster [10].
Though all these processors are SIMD processors, the
widths for each are different. Recent work by [15],
suggests building wide SIMD processors of up to 96
lanes in width to support the different error correc-
tion algorithms within SDR. For our work, we used
the SODA processor [14] to explore the scalability of
SIMD width and to analyze the potential for reduced
register accesses.

A block diagram of the architecture is shown in
Fig. 1. SODA is a control-data decoupled multi-core ar-
chitecture. The SODA architecture consists of process-
ing elements which uses a wide 512-bit SIMD unit that
is capable of operating on 32 16-bit elements concur-
rently. SODA also has a non-uniform memory architec-
ture, with local memories on the processing elements
and a shared global memory. In SODA, RF accesses
are the same as typical DSPs where each instruction
accesses one or two registers from the RF and then
write the results back into the RF. Even if the next
instruction accesses the register value being written to,
the data is written into the RF.

3 4G Wireless Kernels

Though there is no standard yet for 4G, Fig. 2 shows
a high level block diagram of the physical layer of a
NTT DoCoMo test 4G wireless system setup [18]. The
major components of the physical layer consists of 3
major blocks: de/modulator, MIMO encoder/decoder,
and the channel encoder/decoder. These blocks com-
pose the majority of the total computation in 4G. The
role of the modulator is to map data sequences into
amplitudes and phases which then are converted to
the time domain and transmitted. The demodulator
performs the operations in reverse order to reconstruct
the original data sequences. This is typically done by
the Fast Fourier Transform (FFT) algorithm.

—
Encoder

r .
MIMO Channel S Trar:)smllted
Guard | | \cpr Encoder |[f ata
Insertion (Lopc) I
Modulator
Demodulator
o |
i | Tonine, ==TF=}  Estimator
uar
e

——

— Channel

Decoder Decoder 3 Recovered
(STBC/ i (LDPC) Data

V-BLAST) 1

Figure 2 Block diagram overview of a 4G system.

The Multiple Input Multiple Output (MIMO) en-
coder multiplexes many data signals over multiple an-
tennae. The MIMO decoder receives all the signals
from the antennae and then tries to either decode all
the streams for increased data rates or combine all the
signals in order to increase the signal strength. The
algorithm used to increase data rate is Vertical Bell
Laboratories Layered Space-Time (V-BLAST) and the
algorithm used to increase the signal quality is Space
Time Block Codes (STBC). Finally the channel en-
coder and decoder performs forward error correction
that enables receivers to correct errors in the data
sequence without retransmission. There are many FEC
algorithms which are used in wireless systems but
LDPC is the most computationally intensive kernel
and used for the highest data rates. LDPC has also
been proposed in many standards like TGnSync and
WWise [13] for IEEE 802.11n, which leads us to believe
it may be used in 4G systems as well.

3.1 Fast Fourier Transforms (FFT and IFFT)

The transmission path uses an inverse FFT (IFFT) for
modulation and the receiver uses an FFT for demod-
ulation. We will only discuss the algorithm for FFT
because IFFT is almost identical. The FFT operation
consists of a data movement operation followed by a
multiplication and addition on a complex number. An
N-point radix-2 decimation in frequency (DIF) FFT
consists of log, N stages. Between each stage, the N
points of data are shuffled in a butterfly pattern. As
an example, Fig. 3a shows the data movement pattern
of an 8-point FFT which consists of three stages. Each
stage shows a different but regular data movement
pattern. The operation of each stage can be divided
into several 2-point FFT operations. We used a radix-
2 FFT because other FFT implementations have more
complex shuffle patterns which require more cycles to
implement even though the arithmetic may be simpler
(as is the case with radix-4 FFT).

Figure 3b shows the data dependence graph (DDG)
on SODA for one of the major inner loops of FFT.
Each node represents the SODA instruction and the
edges represent the data dependency. These instruc-
tions implement the butterfly operation on the SODA
processor [14]. There are many edges within the DDG
where there is only one producer immediately followed
by the consumer. This means that the values produced
by those instructions will only be used once and then
never referenced again. From this DDG we can see
there is a common instruction pattern that occurs as
shown in Fig. 3c. From this pattern we can see that
only one of the multiply values produced needs to
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Figure 3 For the 8-point
FFT, the butterfly pattern is
the cross between two
different elements in the
vector. The major inner loop
of FFT performs the
operation of the butterfly
across a SIMD. The nodes
represent SODA instructions
and the edges represent data
dependencies. The
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be stored if we were executing the instructions in the
shown order.

The vector width of an N-point FFT is equal to the
number of data points, N. For a 1024-point FFT used
in the NTT DoCoMo test setup, we perform 1024-
point FFTs, meaning that the vector width is also 1024.
FFT has a large amount of DLP because all 2-point
FFT operations required between stages can be done
in parallel. This means that the SIMD can be utilized
almost 100%, suggesting we should increase the SIMD
width to be as large as the vector width of the algorithm
in order to achieve maximum performance.

Figure 4 STBC general

0O:V_or 0:V_0i

Permute Permute
I:v_or I: V_0i
0O:V_or 0: V_0i

Permute Permute
I:v_or I: V_0i
O:V_1r 0: V_1i

Load Load
I: Coeff I: Coeff Add Add

0: V_Wr O: V_Wi 1:V_1r, V_Or 1:V_1i, V_0i

0O: V_resr 0: V_resi
[1.apDisuB | | 3.ADDISUB |
{ 4 1
Mult Mult Mult Mult 2. MULT 4. MULT
1:V_resr, V_Wr 1:V_resi, V_Wi 1:V_resr, V_Wi 1:V_resi, V_Wr
0: V_resi 0: V_res2 0: V_resi 0: V_res2
am “ad 5. ADD/SUB
I: V_res1, V_res2 I: V_res1, V_res2

0: V_resr 0: V_resi
Store Store

I: V_resr I: V_resi
0: Aout 0: Aout

3.2 Space Time Block Codes (STBC)

As stated before, STBC is used to increase the signal
quality of the transmitted signal. Figure 4 shows the
general operation of STBC. The same data is trans-
mitted through each antenna but its representation
is different for each antennae. Specifically, the sig-
nal is transmitted through multiple antennae in con-
jugate forms with different orderings. Signal quality
is increased by receiving the redundant copies of the
same data signal and optimally combining the infor-
mation from each receiver to produce better quality
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estimations of the original data signal. The implemen-
tation we used is based on Alamouti’s 2x2 scheme [5].
In the STBC encoder and decoder, the vector width
is only 4 elements. Though the vector width is small,
each data set is independent. This means that we can
join many data sets together and process one large set.
The set size would be limited only by the amount of
data the FFT provides. In our case, this would suggest
that a 1024 width data set would be most optimal
though this will be dependent on the final 4G standard.
Figure 5a shows the DDG for one of the major inner
loops of STBC. These instructions implement part of
the STBC signal detection operation on the SODA
processor. Like FFT there exists many edges in the
DDG where the values produced by instructions will
only be used once and then never referenced again. We

Figure 6 General decoding
process of V-BLAST.

see a common instruction pattern that occurs as shown
in Fig. 5b. From this pattern we can see that only one of
the multiply values produced needs to be stored if we
were executing the instructions in order.

3.3 Vertical Bell Laboratories Layered Space-time

V-BLAST is a spatial multiplexing scheme that im-
proves the data rate by transmitting independent data
streams over multiple antennae. This technique com-
bines the multiple signals to obtain higher data rate
rather than combine the same signal like STBC.

The general decoding process of V-BLAST consists
of two major steps: channel estimation and signal detec-
tion as shown in Fig. 6. The channel matrix is estimated
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based on pre-defined training symbols. The operations
for channel estimation are relatively simple with shift
and sign-change operations. Once the channel matrix
has been estimated, the detection order is determined.
The detection order is based on signal strength found
among all the signals received. The strongest signal is
selected and extracted from the received signal. This
process is repeated for the remaining signals. This
process is iterative. The V-BLAST algorithm we im-
plemented was based on work from [20], which reduces
the computational complexity of the general V-BLAST
decoder.

Because our system is based on a 4 transmit and
4 receive V-BLAST, the vector width of V-BLAST is
4 elements. The dimension of the channel matrix is
4x4 and the data signal is 4xN, where N is the number
of data points in the FFT. The calculations performed
are matrix operations with the channel matrix. Though
the vector width is only 4, we can exploit larger SIMD
widths because we can process larger sections of the
4xN data signal. The algorithm itself can support SIMD
widths up to 4/N.

Unlike FFT and STBC, V-BLAST has lots of control
and predicate operations within it’s algorithm. Though
this control and predication can be parallelized, the
DDG becomes very complicated. Figure 7 shows some
of the few common instruction patterns that are found
in the algorithm. Figure 7a is often used within matrix
operations. The shuffle and add operations help align
the different rows and columns together and perform
the complex number operations. Figure 7b is used fre-
quently in complex number operations. Because this
V-BLAST deals with complex numbers the most com-
mon operation is the complex multiply. Within these
two operations there are values which are produced and
consumed and never used again outside the small set of

SHUFFLE
I:v1
0:V2
4
ADD
1:V1, V2
0:V3
1 1!
SHUFFLE SHUFFLE MOLT MOLT
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1 1 T T
ADD SUB

1:V5, V6
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(a) (b)

Figure 7 These two instruction patterns are reused many times
within V-BLAST. They are common in many of the matrix
operations. a Subgraph related to matrix operations. b Subgraph
related to complex multiply.
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instructions. These values potentially do not have to be
written into the RF.

3.4 Low Density Parity-Check Codes (LDPC)

LDPC is an error correcting code that can perform
closer to Shannon’s limit than any other code. This
means that LDPC can be used to achieve the highest
data transmission rate possible over a wireless channel.
LDPC is made up of only simple adds, subtracts and
compares. LDPC has no serial dependency in operation
unlike Turbo Codes that have to process SISO decoders
serially after the interleaver. Our implementation of
LDPC is based on [17] which was optimized for the
SODA processor and 802.16e.

The graphical representation of LDPC is shown in
Fig. 8a. The check nodes represents the number of rows
in the parity check code and the bit nodes represent the
number of columns. The edges connecting the check
nodes and bit nodes are the 1’s in the parity check code
matrix—all other values are 0. The LDPC decoding
operation is broken down into 4 stages as shown in
Fig. 8b. These four stages are the Initialization, Bit
Node, Check Node, and Bit Update operation. This
implementation is based on the Min-Sum algorithm.

Figure 9 shows the main operations within the inner
loops of the LDPC decoder. These operations are re-
sponsible for the majority of the work within LDPC. A
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Figure 8 LDPC graphical representation and decoding opera-
tions. a Graphical representation of LDPC code. b LDPC decod-
ing in 4 steps.
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Figure 9 The inner loop operations of LDPC. These three op-
erations represent the majority of the LDPC workload. They
correspond closely to steps 2—4 of the LDPC decoding operation.

large amount of time in LDPC is spent within the bit
and check node alignment. The alignment operation,
as shown in Fig. 9c, shuffles two vectors and then
combines different sections of the two vectors into one
vector. There is no need to save the values that are pro-
duced by the two shuffle operations because they are
used only by the following select instruction. Outside
this operation the values produced by the shuffles are
never used.

LDPC is naturally parallel unlike other error correc-
tion codes. The vector width of the algorithm is related
to the z size of the circulant shifted identity matrix
(zxz). The z value we used was 96 which corresponds
to the maximum LDPC block size in 802.16e [2], which
we assume is the highest data rate because it allocates
the most number of subchannels. This means that we
can benefit from SIMD widths up to 96 elements using
this z value. After this limit there is no performance
benefit. Unlike the other algorithms, we cannot overlap
multiple z wide block rows of the LDPC matrix because
there exists a data dependency between block rows.
This prevents us from utilizing SIMD widths larger than
96 elements. Though 802.16e uses a z values of 96, 4G
may use larger z values allowing SIMD widths larger
than 96 to be beneficial.

4 Methodology

We used the SODA architecture as our SDR SIMD
architecture to explore the scalability of SIMD width
and also the modified RF. We used SODA because
we could modify the implemented Verilog hardware

ST

P_ V_SHUFFLE
I: P1, PMEM2

1:v1, 81
0: V2
[

V_SHUFFLE
1:v3, 82
0: V4

P_SHIFT
1: PO, S2
O: P1

V_P_SELECT
1:P1,V2,V3

V_P_SELECT
1:P1,V2,V4
0: V5

(c)

a Inner loop for bit node and check node operation. b Inner loop
for bit update. ¢ Inner loop for bit and check node alignment.

model for different SIMD widths and change the RF.
We modify the kernels’ assembly code to support these
multiple widths and to use the modified RF. All as-
sembly code was written based on implementations
cited previously in SODA assembly. All of the opti-
mizations and assembly code were done by hand. We
synthesized SODA using Synopsys’ Physical Compiler
in 0.13 micron technology for 400 MHz. Energy values
were then extracted from the models and total energy
was estimated based on the execution of the kernels.

5 SIMD Width Analysis

In Table 1, we analyze the DLP contained within the
kernels. The instructions are broken down into 3 cate-
gories: overhead workload, scalar workload and vector
workload. Overhead workload consists of all the in-
structions that assist SIMD computations, for example
SIMD loads, stores and shuffle operations. The scalar
workload consists of all the instructions that are not
parallelizable and have to be run on the scalar unit.
The vector workload consists of all the raw SIMD
computations that use the ALU, multiplier, and shift
units.

From the table, we can see that FFT is dominated
by the overhead workload of loading the SIMD data
and shuffling it. STBC and V-BLAST have a very
high SIMD computation which suggests that these al-
gorithms are dominated by raw computations and may
be adaptable to very wide SIMDs. Finally, LDPC seems
to have a mixture of all three types of instructions that

Table 1 Data level

. - . Algorithm Overhead Scalar Vector Vector width
nglerﬁserlrsl analysis for major workload (%) workload (%) workload (%) (elements)
’ FFT/IFFT 61 5 34 1024
STBC 14 5 81 4
V-BLAST 24 6 70 4
LDPC 33 18 49 96
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suggests that performance may be limited by the non-
vector workloads.

The table also presents the natural vector widths of
the algorithms. Because we are using a 1024 point FFT
the natural vector width is 1024. This means that this
algorithm can support a SIMD of up to 1024 and still
show performance improvement. This is very different
from the other 3 algorithms whose vector widths are
much narrower. For STBC and V-BLAST the vector
widths may be small, but each set of elements are
independent of each other allowing us to map multiple
sets of 4 element computations onto any larger sized
SIMD to increase performance. LDPC vector width
may be its limiting factor because after a SIMD width
of 96, the algorithm is constrained by the overhead and
scalar workload, which prevents mapping of multiple
sets of the vector elements. Any SIMD width larger
than 96 will see no benefit in performance.

We took each of the major kernels of the 4G system
and mapped them onto wider versions of the SODA
architecture. Most of the algorithms parallelized quite
easily. FFT and STBC were especially easy to paral-
lelize. As we can see in Fig. 10, the instruction break-
down hardly changed from widths 32 to 256 because
these algorithms are composed mainly of loops con-
taining SIMD computations. By increasing the SIMD
width, only the number of loop iterations changed.
Lastly, V-BLAST is somewhat of an exception, because
as we increase the width, the scalar instructions start
to dominate. Thus the performance of V-BLAST will
eventually be bounded by the scalar workload but, as
we can see, the benefit of SIMD width can still provide
major benefits.

In Fig. 11, we show the normalized speed up of the
kernels for different SIMD widths. All the values were
normalized to the 32 wide SODA implementation. For
comparison purposes, the 32 wide SODA implementa-
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Figure 10 Instruction breakdown of each kernel with respect to
SIMD width.
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Figure 11 Normalized speedup of each kernel with respect to
SIMD width.

tion can perform FFT almost 10 times faster than the T1
TMS320C6203 [1]. For FFT, STBC and V-BLAST, the
speed up is linear with width: doubling the width, yields
2x return for each of the algorithms. The performance
benefit of increasing SIMD width is apparent. LDPC,
though, is a different story. Because of the natural vec-
tor width of 96 we can only extract limited parallelism
within the kernel. For SIMD widths greater than 128,
there is no improvement in performance. The large
jump between 64 and 128 width SIMD occurs because
we cannot map all 96 values onto on a 64 wide SIMD
machine. This forces us to do two iterations instead of
the one possible with the 128 and 256 width SIMD.
Because LDPC is the major performance bottleneck of
4G, this suggests that increasing SIMD alone may not
meet the processing requirements.

Finally in Fig. 12, we show the energy consumption
of each kernel for different widths. We computed the
energy consumed taking into account leakage. As we
can see, for FFT, STBC and V-BLAST there is a
great benefit from increasing SIMD width. We get the
greatest performance increase with reasonable increase
in energy consumption. The exception again is LDPC.
Going from 32 to 64, we take a large energy penalty
mainly due to the fact that many SIMD lanes are
wasted because the algorithm cannot map perfectly
onto widths that don’t divide into the natural vector
width. Between 64 and 128, there is not much change
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Figure 12 Total energy consumption of each kernel with respect
to SIMD width.
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because the algorithm is actually mapped relatively effi-
ciently on the SIMD. The biggest jump is at 256 because
all SIMD widths greater than 96 will waste energy doing
unneeded work on the remaining 160 lanes. SODA
does not support clock gating, which can help alleviate
this problem by shutting off the lanes not being used,
but will still result in inefficient use of silicon area for
this algorithm and wasted potential performance.

We find that for these kernels increasing SIMD
width does give us a good increase in performance
with little increase in energy. The exception to this
was seen in LDPC because the algorithm did not gain
any improvement when SIMD width was greater than
128. As stated in Section 3, future implementations of
LDPC may have larger z values which would allow us
to efficiently use larger SIMD widths.

6 Register Access Analysis

Figure 13 shows the power breakdown of SODA run-
ning the 4G kernels. We can see the vector RF con-
sumes almost 37% of the total energy. Others have
shown that for other processors, RF power consumed
almost 25% of the total power [11]. By analyzing the
RF access patterns of the kernels we find that we can
reduce the total energy consumed by the RF.

In Section 3, the inner loop operations of each kernel
were discussed. Each kernel had instruction patterns
within the inner loops where register values produced
were then used by the next following instruction and
then the value was never referenced again. This was
apparent in FFT and STBC which had simple inner
loops. In the SODA architecture, as with many com-
mon DSPs, the result value of each instruction is written
back to the RF and when the value is needed it is read
out of the RF. If the value is only referenced within a
few instructions then there is no reason the value itself
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Figure 13 Power breakdown for the kernels on SODA.

Table 2 Percent of total register file access that are produced and
consumed within a subgraph.

Algorithm FFT/IFFT STBC V-BLAST LDPC
RF reduction (%) 59 53 12 37

These register file accesses can use the small register file.

has to be written back into the main RF. Energy is
wasted by writing and then reading the register value.
Instead, the value can be either forwarded or stored in
a small temporary buffer which can be accessed by any
instruction. Techniques to implement this have been
shown in [8, 16, 21].

By analyzing the kernels running on SODA, we
found the percent of RF access that had potential for
registers not writing into the main RF. This is listed
in Table 2. From the table we find that FFT, STBC
and LDPC have large amounts of RF accesses that can
bypass the main RF. Our implementation of V-BLAST
does not have large amounts of registers that can be
bypassed because there are large amounts of control
within the algorithm. As seen in the SIMD width analy-
sis, the bottleneck of this kernel are the scalar control
instructions. Because of this control, the registers need
to be kept until the condition that chooses the value is
calculated. This requires the use of the full RF. Though
there are lots of register value which need to be kept,
there are operations within the kernel which can be
bypassed. These operations are related to all the matrix
and complex number arithmetics that are done within
the kernel.

The modification to SODA, shown in Fig. 14, was a
small two-entry RF and register write bypass which is
explicitly controlled by the instruction. The two-entry
RF is a partition of the main RF similar to split register
files [21]. We implemented it by mapping two registers
of the main RF registers to the smaller RF. When
a request for those registers is made, we disable the
read/write to the main RF and mux the data from/to the
smaller RF. Register write bypass prevents the value
from being written to the RF and forwards it directly
to the input of the next instruction. This is done by
an extra bit in the instruction. If the bit is set then the
instruction will not write the value into the RF because

k=)=
Reg File

B

Figure 14 Modified register
file. Data can either be
written to the main register
file, the small register or
bypassed completely from Ll
both allowing data to be
forwarded directly to the next
functional unit.

I Small RF .
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Normalized Total Energy
o
[
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Figure 15 Total energy consumption of each kernel with reduced
register file access. SODA is the baseline processor where each
instruction always writes back to the register file then is read
when needed. RRA-SODA is the modified SODA architecture
that can write the values to a smaller register file

the next instruction will use the value and the value
will not be used again. The next instruction, which
references the same register as the current instruc-
tions’ register destination, will get the data forwarded
directly from the write port of the RF to the correct
read port without the value being written to the RF.
Figure 15 shows the amount of energy savings that
can be achieved on a modified SODA architecture.
From the figure we see that we are able to save be-
tween 6-15% of the total energy in the processor while
maintaining the same performance. These results were
as expected, following what we saw in Table 2. FFT,
STBC and LDPC showed substantial energy reduction
by reducing RF accesses while V-BLAST showed far
less reduction in energy. This total reduction in energy
translates into lower total power of the processor for
these set of kernels.

7 Conclusion

Though the power and performance requirements of
4G is a significant challenge for designers, scaling SIMD
width and reducing register accesses can help us gain
major performance increases and reduce power con-
sumption. We have seen almost a doubling of per-
formance with doubling SIMD width. Not all kernels
benefited from the increase in SIMD width. LDPC
clearly is a major limiting factor in 4G. By increasing
the SIMD width, FFT, STBC and V-BLAST benefits
but LDPC benefits less. This suggests that LDPC may
better be implemented on an accelerator or another
specialized core with a different SIMD width. By re-
ducing the RF accesses, we reduced the total energy by
between 6-15% across the kernels. While FFT, STBC,
and LDPC had the most energy reduction because
many of the RF accesses could be reduced, V-BLAST

@ Springer

had less reduction in energy because many of the values
had to be kept.

SIMD scalability and register access reduction are
just two techniques in the processor design where we
can extract more performance and reduce energy. Re-
ferring back to Section 3, we notice that many of the
kernels had similarities between their common sub-
graphs. In future work we will see if we can take
advantage of these common subgraphs to improve per-
formance. Another open issue is compilation for SIMD
architectures. In this work, the kernels were hand writ-
ten in assembly and optimized for varying with SODA.
This prevents code compatibility among other types of
systems with varying widths. Further work has to be
done on kernel compilation for SIMD architectures and
scheduling the code for varying widths. With a com-
bination of the two architectural techniques presented
and future work in SDR processor design, we may
eventually be able to process 4G efficiently, within the
power and performance requirements.
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